3 result(s)
Page Size: 10, 20, 50
Export: bibtex, xml, json, csv
Order by:

CNR Author operator: and / or
Typology operator: and / or
Language operator: and / or
Date operator: and / or
Rights operator: and / or
2023 Conference article Open Access OPEN
Commonsense injection in conversational systems: an adaptable framework for query expansion
Rocchietti G., Frieder O., Muntean Cristina, Nardini F. M., Perego R.
Recent advancements in conversational agents are leading a paradigm shift in how people search for their information needs, from text queries to entire spoken conversations. This paradigm shift poses a new challenge: a single question may lack the context driven by the entire conversation. We propose and evaluate a framework to deal with multi-turn conversations with the injection of commonsense knowledge. Specifically, we propose a novel approach for conversational search that uses pre-trained large language models and commonsense knowledge bases to enrich queries with relevant concepts. Our framework comprises a generator of candidate concepts related to the context of the conversation and a selector for deciding which candidate concept to add to the current utterance to improve retrieval effectiveness. We use the TREC CAsT datasets and ConceptNet to show that our framework improves retrieval performance by up to 82% in terms of Recall@200 and up to 154% in terms of NDCG@3 as compared to the performance achieved by the original utterances in the conversations.DOI: 10.1109/wi-iat59888.2023.00013
Project(s): EFRA via OpenAIRE
Metrics:


See at: CNR IRIS Open Access | ieeexplore.ieee.org Open Access | ISTI Repository Open Access | CNR IRIS Restricted | CNR IRIS Restricted


2023 Conference article Open Access OPEN
Rewriting conversational utterances with instructed large language models
Galimzhanova E, Muntean Ci, Nardini Fm, Perego R, Rocchietti G
Many recent studies have shown the ability of large language models (LLMs) to achieve state-of-the-art performance on many NLP tasks, such as question answering, text summarization, coding, and translation. In some cases, the results provided by LLMs are on par with those of human experts. These models' most disruptive innovation is their ability to perform tasks via zero-shot or few-shot prompting. This capability has been successfully exploited to train instructed LLMs, where reinforcement learning with human feedback is used to guide the model to follow the user's requests directly. In this paper, we investigate the ability of instructed LLMs to improve conversational search effectiveness by rewriting user questions in a conversational setting. We study which prompts provide the most informative rewritten utterances that lead to the best retrieval performance. Reproducible experiments are conducted on publicly-available TREC CAST datasets. The results show that rewriting conversational utterances with instructed LLMs achieves significant improvements of up to 25.2% in MRR, 31.7% in Precision@1, 27% in NDCG@3, and 11.5% in Recall@500 over state-of-the-art techniques.DOI: 10.1109/wi-iat59888.2023.00014
Project(s): EFRA via OpenAIRE
Metrics:


See at: CNR IRIS Open Access | ieeexplore.ieee.org Open Access | ISTI Repository Open Access | CNR IRIS Restricted | CNR IRIS Restricted


2024 Conference article Open Access OPEN
LongDoc summarization using instruction-tuned large language models for food safety regulations
Rocchietti G., Rulli C., Randl K., Muntean C., Nardini F. M., Perego R., Trani S., Karvounis M., Janostik J.
We design and implement a summarization pipeline for regulatory documents, focusing on two main objectives: creating two silver standard datasets using instruction-tuned large language models (LLMs) and finetuning smaller LLMs to perform summarization of regulatory text. In the first task, we employ state-of-the-art models, Cohere C4AI Command-R-4bit and Llama-3-8B, to generate summaries of regulatory documents. These generated summaries serve as ground-truth data for the second task, where we finetune three general-purpose LLMs to specialize in high-quality summary generation for specific documents while reducing the computational requirements. Specifically, we finetune two Google Flan-T5 models using datasets generated by Llama-3-8B and Cohere C4AI, and we create a quantized (4-bit) version of Google Gemma 2-B based on summaries from Cohere C4AI. Additionally, we initiated a pilot activity involving legal experts from SGS-Digicomply to validate the effectiveness of our summarization pipeline.Source: CEUR WORKSHOP PROCEEDINGS, vol. 3802, pp. 33-42. Udine, Italy, 5-6/09/2024
Project(s): EFRA via OpenAIRE

See at: ceur-ws.org Open Access | CNR IRIS Open Access | CNR IRIS Restricted